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Abstract

We show how a Bayesian analysis of a fertility model incorporating many of the

previously suggested models can account for uncertainty about which fertility model

provides the best approximation in any given trial. We also show how uncertainty

about anomalies such as outliers and fertility jumps can be accounted for. We argue

that this is preferable to conditioning on an "appropriate" model, and show by examples

how accounting for such possible anomalies can both influence support for a particular

fertility model and reduce the dependence of treatment estimates on the choice of

fertility model.
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1 Introduction

The object of most agricultural field trials is to assess the effect of treatment on yields. This

must be done in the presence of unknown fertility trends through the field. Many stochastic

models for these fertility trends have been proposed and shown to be efficient competitors

to classical blocking designs (see Section 2). In this paper we shall restrict attention to

trials where plot fertilities are correlated in only one direction. In the case of a rectangular

lattice of plots this is often assumed when the long, thin nature of the plots makes those

with common long edges spatially close compared to those with common short edges.

When using a stochastic model for field fertility in the analysis of a particular trial two

questions must be addressed. The first is the choice of fertility model, and the second is the

treatment of anomalies such as outliers and fertility jumps, i.e. sudden level shifts in fertility.

Even when several such possibilities are entertained, it is not uncommon to condition on a

single model and a single set of anomalies, which are determined by model diagnostics; sec

for example Cullis, McGilchrist and Gleeson (1989) and Martin (1990). Here we propose

to account for uncertainty about the fertility model and possible anomalies rather than to
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condition on an "appropriate" model. This will be particularly important when several

choices are almost equally appropriate (see Section 4.3).

We first define a general but simple state-space model for agricultural field trials, which

turns out to include many of the models in current use (Section 2). We then show how

this framework allows us to model outliers and fertility jumps quite easily (Section 3). The

importance of doing this and of accounting fully for the associated uncertainty is illustrated

in several examples (Section 4).

2 A Fertility Model

2.1 Model Definition

We suppose that the trial consists of one or more blocks of plots. Here a block refers to a

row of adjacent plots, with plots in different blocks assumed to bear little relationship to

each other. The plots are numbered 1 through noplots along the row within each block, and

block by block. Plot t is therefore at the beginning of a new block if I = 1 or plots I and

t - 1 are in different blocks.

We assume that the data can be decomposed additively;

Y = D- + F + s(1)

where Y is the noplots-vector of yields, r is the notreats-vector of treatment effects (which

may include other covariates), D is the corresponding design matrix, F is the noplots-vector

of fertility levels, and f is the noplots-vector of measurement errors.

We model F recursively to correspond to walking through the plot, fron plot I to plot

noplots, with t therefore indexing time as well as the plots. Starting from the assumption

that the fertility is approximately locally linear, we suppose that the fertility level at, plot

t not only depends on the fertility level at the previous plot. but also on some measure of

the rate of increase in the fertility at this plot. We define G,_1 to be this fertility gradient
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between the fertility level at plot t, namely F, and that at plot t - 1, namely F- 1 .

More precisely, we shall model the plot fertilities conditional on the parameters A1 ,A2,

and ad, where 0< A2  lad2 > 0 recursively as follows,

case 1 same block;

F )t A 1 F )t+ (t 0 , N (,2 a(2( )= ( A)()1 ( ), ~ ~d(,Urd) (2)
G t 0 A2 G 9-

case 2 new block;
F ,N N(0, '5uncond) (3)

X~nod= ( (-A')(I-A,,\;) (1--A 1\\ 2) agrad

0 -A 1 A2 ) 2 /
where we use the notation (t - 1) to indicate the set 1,2.... t - I.

The assumption that JAn1, IA2 1 < 1 results in the distribution of ( F ) being stationary

and it is the distribution unconditional on other plots that we use when at the beginning

of a block. We are assuming here that while the plot at the beginning of a new block is

not adjacent in the field to the previous plot, the two plots are relatively close. Thus while

the two plots have similar characteristics (i.e. the s'me marginal distribution) they can be

assumed independent.

The intuition of a smoothly varying fertility suggests that both A, and A2 should be

non-negative. The restriction A1 _> A2 is enforced to aid identifiability as tl>c marginal

distribution of Y remains unchanged if we interchange A1 and A2 . Inde,-i, the marginal

distribution of the fertility level Ft also remains unchanged, w\'ith this interchange affecting

only the distribution of the fertility gradient G. The choice of A, heing the larger coincides

with our intuition governing the definition of F and G.

In line with c representing measurement error, we shall aibume that the (t, (t 1. op/o.)

are independent (and independent of F), and further make the distributional assumption,
iid2

N (0, aobs), t = 1,.., nol)ots (701s o,
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While ( could be absorbed into F, we make the distinction as the term c is directly

interpretable as measurement error and observed data often supports its presence (Whittle,

1954). The distribution of Y is therefore dependent on the parameter 0' = (0ad. obs, A,, A2 ),

or 0 = (0 2, %fert, A, A2) where 0.2 =+,_,, 2 U 2 is the variance of any

observation Y given D and 7 only, and %fert = 100(1 - _h) is the percentage of this

variance explained by the fertility.

The condition 0 < A2 _< A, < 1 forms a triangle in (A1,A 2 ) parameter space, with an

open side (being the bound to non-stationarity) and two closed sides. This suggests two

natural special cases for modelling field fertility, with the more general parameter values

lying between these special cases. (We ignore the non-stationary side; see Section 6). The

first special case is obtained by forcing A2 = 0. This model, while assuming that the fertility

levels at consecutive plots are related, assumes that the fertility gradients are independent.

This typically results in jagged fertility trends. The second case results by forcing AI =A2

and potentially produces smoother fertility trends than the first.

Figure 1 displays these two special cases in relation to our (A,, 2 ) parameter space. to-

gether with various fertility models previously proposed for field fertility. These include the

simplest conditional auto-regression (Besag, 1974), the simplest simultaneous auto-regression

(\Vhittle, 1954), the first difference model (Besag and Kempton, 1986), the second differ-

ence model (Green, Jennison and Seheult, 1985), and the ARINIA (1,1.0) (Gleeson and

Cullis, 1987), AR(1) (Patterson, 1983) and white noise models.

Figure 1: *** Figure 1 about here

Ouir fertility model is a special case of the AR(2) model, with A, and A-2 being the roots

of the characteristic equation. Forcing these roots to be real and positive eliminates models

with oscillating correlograms that can take negative values. \We argue that these phenomena

do not conform with the notion of a fertility trend, where the correlations should decrease
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with increasing distance and remain non-negati,'e. If present, it is assumed that tiey can be

more directly modelled (such as with direction of harvester as a covariate), and not included

with the fertility.

The model with A1 = A,2 is the AR(2) model with equal roots of the characteristic

equati.The resulting autocorrelation function has the form pk = ( + ~)k. Thisequation.Threutn uoorltofucinhstefrPk I++Xkhs

autocorrelation function is unlike those for any other AR(2) model in that while it is monot-

ically decreasing away from zero, it is flat at the origin rather than spiked. This special

case of the AR(2) model was not studied by Box and Jenkins (1976), for example. The

same autocorrelation structure also arises from what may be considered the simplest. truly

bilateral simultaneous autoregression, namely F, = a(F,.1 + Ft+,) + ,, where a =

Whittle (1954) considered the two-dimensional version of this process and described data

that supported this phenomenon.

2.2 Bayesian Estimation

To calculate the posterior distribution of r we must calculate the integral

p(rIY) = fp(-r,OIY)dO

oc Jp(Yjr7,O)p(r,O)dO

where p(Yjr,90) is the likelihood and p(r,O) = p(TrO)p(O) is our prior for (7, 0). In general

this integral cannot be evaluated analytically, and so a numerical technique must be used.

The computation can be simplified by using a multivariate normal prior for (71o) (or with

simple modifications a mixture of multivariate normals). It then follows that p(rjY,O) o,

p(Y-r, O)p(rO) is also a multivariate normal, and p(rlY) = fp(rrjY,O)p(OIY)dO is a mixture

of these normal distributions.

The mean and variance of (7Y, 0) and the likelihood given 0. p(YIP). caln be calculated

directly using the Kalman filter with state X = (F1, Gt, 71,. , NeiVi in the presence
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of missing values (Kalman, 1960). This suggests the use of importance sampling to estimate

the posterior for r by first simulating 0 (iA',...,A) independently from the sampling

importance density f(0), and then forming the estimate

IN Pf0.i1'i

P(TY - Ep(rI Yi,Y)-- (4)/5(fY) N i=1 f (O,)

The distribution f(O) is chosen such that it can be easily simulated from, and is as close to

the unknown p(OIY) as possible. As N approaches infinity, P(TIY) approaches p(r[Y).

Another approximation is

p(rIY) = p(rO, Y), (5)

where 9 is the value of 0 that maximises the posterior distribution of 0, p(91Y). A numerical

maximisation of p(OIY) is therefore required to obtain 9.

Figure 2 displays the posterior of a treatment contrast (early spraying - no spraying)

in the mildew control trial (Draper and Guttman, 1985; Jenkyn et. al., 1979) estimated by

equations (4) and (5) under the prior p(r, O) cc o- 2. Similar results were obtained with other

vague priors. While conditioning on 9 resulted in a good approximation with considerably

less computation, as expected it underestimates the uncertainty about the value of this

contrast. It obtains the same mean but its variance is underestimated by about 19%.

Figure 2: *** Figure 2 about here

The accuracy of the approximation (5) is not surprising when one notes its similarities

with Restricted Maximum Likelihood (REML) estimation (Patterson and Thompson, 1971:

Laird and Ware, 1982). When the prior p(r,O) cx 1 is used, 0 equals the REML estimate of

0 and the (1-a) highest posterior density region of the approximate posterior distribution

of T equals the (1-a) confidence interval from conditioning on the REML estimate of 0.

To correct the underestimation of uncertainty that occurs in REML, it has been suggested

that the REML estimate of a
2 be inflated by -1 where n is the number of observations and
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df=n-dim(O). However, here this increases the variance by only about 9% compared with

the 19% that would be required to make it exact.

Note that a better choice of prior than p(r, 0) cx 1 is likely to be available. Even ig-

noring the fact that 9 contains variance terms for which a non-uniform prior may be more

appropriate, for many trials prior information about r will be available. This is particularly

likely to be the case when r represents the effect of different varieties. In early generation

variety trials the prior for r should reflect the genetic relationship between the varieties (see

for example Cullis et. al., 1990). For later trials, the information derived from earlier trials

with these varieties can be utilised.

An alternative to using a pre-specified prior is to use a random effects model where the

variety effects have an exchangeable joint distribution. The prior distribution of the variety

effects can be estimated from the data, leading to an empirical Bayes approach. If that

distribution has a parametric form, we have a parametric empirical Bayes model (Morris,

1983). A simple parameterisation of the distribution for this population is to assume 7

multivariate normal with mean yI. 1 and variance matrix o,2Cr. Here C, is a pre-specified

covariance matrix for r, 1 is the notreats vector of ones, and /1, and a2 are unknown scalars

that could, for example, be estimated by the mode of their posterior density.

Figure 3 illustrates the effect of using a random effects model instead of a fixed effect

model on the ARC 2 trial (a trial with 38 treatments replicated 3 times and nothing unusual

in the way of outliers or fertility jumps). Here we have used the approximation just described

with C, equal to the identity and the model with AlI=A2. Note that the random effects model

results in estimated treatment effects (posterior means) with a smaller range. The standard

deviations of the treatment difference posteriors were similarly reduced. This shrinkage

agrees with our intuition that the treatment with the largest estimated effect from the fixed

effect model is likely to be overestimated. The reason for this treatments favourable result

is at least in part likely to be due to random deviations (as it would be comple ely if the
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true variety effects were equal).

Figure 3: *** figure 3 about here*"*

3 Modelling Outliers and Fertility Jumps

3.1 The Robust Model

We now extend our model to allow for the possibility of outliers and fertility jumps. The

term outlier is used to refer to a single observation whose value was generated by a different

mechanism, while a fertility jump refers to a sudden, relatively large shift in the fertility

level compared to the majority of the observations. Both occurrences are considered rare,

but when present can greatly influence the resulting inferences. We retain the decomposition

in equation (1), and the treatments r and design matrix D, but assume that a fertility .jump

modifies the distribution of F and an outlier modifies the distribution of f.

The field fertility is modelled as in equations (2) and (3). However, given that there

is a fertility jump at plot t, we assume that the fertility at plot t is independent of the

fertility at plot t - 1. We apply the same justification as was used in Section 2 when plot i

is at the beginning of a block, and hence apply the same distributional assumptions. Thus

equation (3) is used if plot t is either at the beginning of a block or at a fertility Jump, with

equation (2) being used otherwise.

We model outliers by modifying the distribution of the measurement errors (. While

retaining normality and independence of the Et, we inflate the variance of ct by a constant

factor, kou, when observation t is an outlier. We shall henceforth assume this variance

inflation factor to be 100 (see Section 5 for a discussion of this value). Thus, wh1ile an o1t1er

observation yt still has a distribution centred on (Dr), + I",. its distribution is considerabl'

more spread out.
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To avoid a possible identifiability problem, we assume that a fertility jump cannot occur

at the beginning of a block. We also make the assumption that a fertility jump and an

outlier cannot both be present at the same plot. This simplifies our model by allowing at

most three possible cases for each plot: a fertility jump, an outlier, or neither. The fourth

possibility of both a fertility jump and an outlier should be uncommon, and we note in this

case that the distribution of y, is affected little by the exact value of the fertility at plot t.

Hence in this case we re-define the fertility jump at plot t to be at plot t + 1. While this

results in an incorrect estimate of the plot fertility at plot t, we note this and consider it to

be of little consequence, as the posterior distribution of r which is of primary interest will

be affected negligibly.

Formally, we shall let cj denote the condition of plot t. Thus ct = I if plot I has neither

an outlier nor a fertility jump, c, = 2 if plot t has an outlier, and c, = 3 if plot t is at a

fertility jump. Then c = (C 1 ,... ,Copot,) denotes the condition of all the plots. We define

the submodel Mc to be the model with plot conditions c.

Our model for Y consists of a mixture of these submodels where each submodel M is

weighted according to the prior probability of model Mc. The likelihood for )' is therefore

p(Y) = Ep(YIMC)p(MC)
C

and the posterior distribution of T, the quantity of interest, is given by

p(rj)') ax _p(rY, M)p(McIY).

We assume that the prior specifies the conditions of the different plots to be statistically

independent and that the conditions 1,2, and 3 have prior probabilities 96%, 2%, and 2%

respectively. These choices are discussed in Section 5.
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3.2 Comparison with robust time series

In the absence of the term Dr, we obtain a robust model similar to those employed in

robust non-seasonal time series (Harrison and Stevens, 1976; \Vest and Harrison, 1990).

Estimation under such models is aided by the fact that an observation is most correlated

with observations on nearby plots, the neighbours. Thus the condition of a plot can be well

estimated with knowledge only of the observations on the neighbouring plots. Estimation

can then proceed recursively by updating the plots in field order, so that a plot is considered

at about the same time as its neighbours.

In the presence of the term Dr, the neighbourhood structure described above is more

complex, with the neighbouring plots not only being those nearby in the field, but also those

receiving a similar treatment combination. A recursive procedure is therefore not as efficient,

as it becomes difficult to update the plots in such a way that a plot is updated at about the

same time as its neighbours. The simp!est solution to this problem would be to condition on

an estimate of 7-, and then estimate the c.,ndition of the plots as before. Figure 4 compares

the results of using maximum likelihood on the full model to estimate T with the exact

Bayesian solution in some simple cases.

Figure 4: *** figure 4 about here

2

In Figure 4 we assumed that F=O and ob,-=1, so that the observations are independent

with a, variance of 1, or of 100 if conditioned to be an outlier. The (scalar) mean 7 was

assumed to have the improper uniform prior and only .he first observation had positive prior

probability (2%) of being an outlier. The approximation is good with nine replicates. but

seriously underestimates the uncertainty about whether the observation is an outlier or not

with three replicates. The problem occurs because the likelihood is the niixtInrC of the two

normal likelihoods corresponding to the two submodels, and with few replicates the critical

factor is which of these likelihoods dominates the other. Mlaxinmin likelihood cannot be
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expected to perform well when the log-likelihood is so nou-quadratic, nor is it trivial to

ensure that the global maximum and not just a local maximum is achieved.

3.3 Estimation for the Robust Model

The over-simplified model used for Figure 4 suggests that the posterior probability of an

observation being an outlier is well approximated by zero unless its cross-validated residual

is at least 3. Since such a large residual is rare under the non-robust model, this suggests that

most of the submodels of our model will have very low posterior probability. We therefore

propose to calculate only the submodels that have non-negligible posterior probabilities

M,, c C C, and approximate the posterior probabilities for the other submodels by zero. We

defer the estimation of C to Section 3.4, but now take it as given.

We approximate the posterior distribution of r as follows;

p(TIY) Z ZJp(r,O,A1c)')do
cEC

;: P (m C1Yr)p( -I c, A , ) . (6 )
cEC

In equation (6), jc is the value of 0 that maximises p(OjM,, Y), and

p(MJPY) cx p(YIM,)p(Mc)

= P(MC)Jp(YO,M)p(OIMc)dO
"-p(M pA 0M p0l (7)

where p(OjMf) is the prior for 0 under submodel Mc, and is typically assumed to be the

saanc for every submodel. Thus each submodel is estimated separately. as in Section 2.2.

and the results combined under the assumption that integrating 0 out of p(. 0I1I) can be

well approximated by maximising it, with respect to 0.

The simpler approximation that conditions on a single value 0 of 0 that niaxlmises
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&EC p(O, MoIl)

p(TfY) J- P( 1 0, McIY)dO

/ J cp(rO, Mc, Y)p(MAjO ' Y)p(OIY) dO
CEC

, _p(rTO MC, Y)p(Mc 1b, I") 8

cEC

applies the same approximation as in Section 2.2 to the complete model. A comparison of

these two approximations is illustrated in Figure 5, where we again assume the simplified

model with zero fertility, so that O-robS, and the observations are independent. Observations

receiving the first treatment were all assumed to be zero except for yl, while observations on

the other treatments were such that their residual sum of squares equalled their degrees of

freedom (so0 & 1).

Figure 5: *** Figure 5 about here

In this case approximation (7) is very good (and is exact if the prior p(2abs) cx 1 is

used in (7) in place of the assumed p(aob) c 1/oab). Approximation (8) underestimates

the uncertainty about whether the first plot contains an outlier or not, especially for small

trials.

3.4 Determining the Conditioning Set of Outliers and Jumps

Due to the large number of possible submodels, it is likely that any practical choice of C.

the conditioning set of anomalies, will in total comprise a small percentage of the posterior

probability; the majority of the probability being spread very thinly over the very large

number of remaining submodels. Nevertheless, the posterior for the treatment difference

7, - rj will primarily be influenced bv the presence of outliers on any plots with treatments

i or j applied, or by fertility jumps on plots close to these plots. It is the marginal posterior

probabilities of outliers and fertility jumps on these plots that is of primary importance
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when calculating the posterior for this treatment difference. These marginal posteriors can

be reasonably approximated by a few submodels since to a first approximation the posterior

occurrences of outliers and fertility jumps can be assumed independent. This approximation

is most likely to be violated when the addition of an outlier or fertility jump greatly modifies

the estimate of 0, influencing the probabilities of future outliers or fertility jumps through

different distributional assumptions (likely only in small trials or when the original outlier

or fertility jump has very high posterior probability), or when the outliers or fertility jumps

in question are close under the neighbourhoed structure.

To determine the set of submodels M,, c E C, that have non-negligible posterior proba-

bility we adopt a recursive procedure beginning with the submodel ct=1 Vt. This submodel

corresponds to no outliers or fertility jumps and often has high posterior probability; we

adopt the convention of always including it in C.

Given that we have just included the submodel M, in C, we then consider the submodels

M, in C,, which have the same outliers and fertility jumps as M, plus one extra outlier

or fertility jump. The submodels in C, are then approximately ranked according to their

posterior probability, and estimated in turn until a submodel from C,, is rejected from C due

to its low posterior probability. Here the submodel M, is rejected if its posterior probability

is less than a proportion a of the sum of the posterior probabilities for the submodels

previously considered from C,, and M. The proportion a is taken to be small, and in our

examples we took a = 2%. Choosing a to be close to the (usually small) prior probability of

an outlier or a fertility jump seems reasonable because it implies roughly that when the data

alone provide evidence against a plot being an outlier or a jump, that possibility is ignored.

(Of course, the posterior probability of an outlier or a jump is reduced by also taking account

of the prior knowledge that these are, by definition, relatively rare events). The recursion is

continued by considering those submodels with an extra outlier or fertility jump from those

submodels M, accepted into C.
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There are various ways of determining the ranking of Ce,. Likely outliers can be detected

by the estimated measurement errors with large magnitude from the submodel Al, (note

that O,' is likely to be close to b, due to the similarity of the submodels). Similarly. likely

fertility jumps may be detected by values of - from the submodel M. A

more refined estimate for a selection of submodels could be based on p(.IIO, 1 , 1") where

i, is the estimate of r from Mc, or even better based on p(MIO", 1"). These rankings for

Cc, are likely to be progressively more accurate but require progressively more computation.

They all require considerably less computation than our final estimate, p(M,,i ,, Y"), which

requires a numerical optimisation and should only be required for a small subset of submodels

in C,.

4 Examples

We now consider three trials as examples. All are early grain variety trials conducted by

the Agricultural Research Council of Great Britain and consist of 3 or 4 blocks with. each

variety (treatment) applied to exactly one plot in each block. The first two trials (ARC S

and ARC 6) illustrate respectively the case where there is uncertainty about whether a single

outlier or fertility jump is present, while the third trial (ARC 1) illustrates the occurrence

of many possible outliers and fertility jumps.

4.1 A Possible Outlier: Trial ARC 8

The model with general (A1 , A2) provided negligible gain in likelihood p(YlO) over either of

the two special cases A2=0 or A=A2, and we therefore restrict consideration to the latter two

models. Figure 6 displays the treatment adjusted data (i.e. V'- D¢ where + is the estimate of

r unde-" the submodel c,=1 Vt) in field order for the three blocks with the treatment inumber

as the plotting symbol. The lines are the estimated fertilities from the A,=A 2 model (solid)

and the A2 =0 model (dotted). While the posteriors for r were very similar under the two
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models, the estimated fertility is smoother under the A =A2 model, with correspondingly

larger estimated measurement errors.

Figure 6: *** Figure 6 about here

Figure 7: *** Figure 7 about here

The large magnitude of the estimated measurement error on plot 23 suggests that this

value is atypical, and Figure 7 is similar to Figure 6 but assumes the submodel c23=2. c,=l

Vt-$23. This is almost equivalent to removing this observation from the analysis. Table I

summarises the estimation of these two submodels under the two models.

Table 1: *** table 1 about here ***

Both models achieve similar loglikelihoods, and this together with the fact that for either

submodel the models achieve similar posteriors for -r suggests that for this trial submodel un-

certainty is more important than model uncertainty. With a prior probability of an outlier of

2%, this translates (by approximation (7)) into posterior probabilities of an outlier on plot 23

of 82% and 79% for the A2=0 and AI=A2 models respectively. Approximation (8) however

results respectively in posterior probabilities of 98% and 97%, and essentially conditions onl

plot 23 containing an outlier.

For comparison, a complete Bayesian analysis with prior p(O) (x 1/C2 resulted in a pos-

terior probability of c23=2 of about 68±4% (calculated using importance sampling as in

Section 2.2). Thus approximation (7) also underestimates the uncertainty about the condi-

tion of plot 23, but not as much as approximation (8).

Finally we note that it is the possibility of c 23 =1 or 2 that is the primary issue for this

trial. The next most likely outlier appears to be on plot 33 with a posterior probability of

less than 3%, and the most likely fertility jump probably occurs at plot 43, with a posterior
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probability of about 6%. These possibilities have little influence oni the posterior for T. The

effect on the posterior of r of uncertainty about the condition of plot 23 will be illustrated

in Section 5.

4.2 A Possible Fertility Jump: Trial ARC 6

Whereas the trial ARC 8 was dominated by a large measurement error relative to the fertilitv

trend, the trial ARC 6 provides the contrasting situation where c'b is very small. Here we

shall assume that oobs = 0 for trial ARC 6 to illustrate a possible fertility jump. Figure S

graphs the treatment adjusted yield (under the model with A1=A2 ) against plot number in

the same manner as for trial ARC 8. Note that here there are four blocks, and since o2 = 0

the estimated fertility equals the treatment adjusted yield.

Figure 8: *** Figure 8 about here

Table 2 sumrnmarises the estimation of the two submodels c,=l Vt and c5=3, ct=l Vt#5

under the two models with _b,=0 (note that only when AI=A2 and c5=3 would &'b, be

estimated to be non-zero).

Table 2: *** table 2 about here

Unlike in the previous example, the choice of model now influences the evidence for the

submodels; the fertility jump at plot 5 is more likely under the model with A, =A2 . Assuming

a prior probability of a fertility jump of 2%, the posterior probability that c5 =3 is 637 when

A,=A 2 compared to 16% when A2=0. This increased model influence is to be expected due

to the lack of measurement error, making the distribution of Y more dependent on the

distribution of F.

We note that while the model A2=0 was 0.6 units of loglikelihood superior to the model

A,=A2 when conditioning on c5 =1, it is 0.2 units inferior when taken unconditionally. Thus.
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when the possibility of fertility jumps is introduced, there is quite a shift in evidence about

which fertility model is appropriate. Furthermore, under the submodel ct=l V1, it is the

posterior for the treatment difference r17 - T16 that differs most between the two models. It

is also this treatment difference that is most influenced by the introduction of the fertility

jump at plot 5 (since treatments 17 and 16 were applied to plots 5 and 4 respectively).

and we shall show in Section 5 that allowing for the possibility of fertility jumps makes the

treatment posteriors under the different models more similar.

4.3 Multiple Possible Outliers and Fertility Jumps: Trial ARC 1

The treatment adjusted data is plotted in Figure 9 together with the estimated fertility

from the Al=A2 model. A dominant feature here is the inability of the estimated fertility

to increase as quickly as the treatment-adjusted data over plots 1 to 10. A fertility jump

at plot 5 appears more appropriate, and Figure 10 displays the results conditional oil the

submodel c5=3, c,=l Vt#5. This fertility jump is well supported by the data, with a posterior

probability of over 95% from a prior of only 2%.

Figure 9: Figure 9 about here

Figure 10: Figure 10 about here

We shall restrict attention here to the smoother model A,=A2 because while it is superior

to the A2=0 model by only 0.1 units of loglikelihood when conditioned on c5=1, it is superior

by 1.4 units when cs=3. Due to the dominance of c5=3 over c5=1 (under either model), the

data strongly favours the A1=A2 model under the robust model.

Table 3 shows the 13 submodels with highest approximate posterior probability, and their

posterior probabilities conditional on C only containing these subniodels. Table 4 shows the

marginal posterior probabilities of the 7 most likely outliers and fertility jumps from our
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analysis (with a=2%, see Section 3.4). Note that conditioning on a single submodel is not

appropriate, as the submodel with highest posterior probability conditions on a fertility jump

at plot 5 only, while the marginal posterior probability of an outlier on plot 49 is 63%.

Table 3: * table 3 about here

Table 4: table 4 about here

5 Sensitivity to Model Specification

Due to the large number of submodels, it is not practical to compute the likelihood as a

function of the parameters Pout and Pjump. Furthermore, the likelihood function can be quite

flat indicating that the data contain little information concerning these parameters, and

we have conditioned on values of these parameters (2%) chosen prior to data collection.

Nevertheless, the value of these parameters can have a substantial effect on the posterior for

T-, especially if they are set too low in the presence of outliers and fertility jumps.

It is therefore useful to examine how the posterior for - is influenced by our prior choice

for Pout and pjump, and this information is easily available under the approximation (6)

and (7). We note that under this approximation the submodel priors influence the posterior

for r only through the mixing proportions of the posteriors for r based on each submodel

(assuming the same C). Figure 11 displays the posterior for the treatment differences rs - 77

and 7 16 - T15 in trials 8 and 6 as a function of Pout and Pj,,mp respectively. The left graph in

Figure 11 assumes that C contains only the two submodels c1=l Vt and c 23 =2, ct=1, Vt-$23

and the model A2 =0. The other two graphs in Figures 11 both assume that C contains only

the submodels c1=1 Vt and c5=3, c,=1 Vt5i5. The center graph in Figure 11 assumes the

model A, =A 2 while the model A2=0 is assumed on the right. In all cases the !%, "2%, 971-%.

and 99-% quantiles are graphed along with the posterior mean.
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Figure 11: *** Figure 11 about here ..

The major feature of these graphs is the insensitivity of the posterior to the precise value

of Pout or Pi..p. For these examples, any value of pout or Pjump between 1% and 5% will yield

relatively similar posteriors compared to the extremes of 0% and 100% (which correspond to

the two submodels). The two graphs to the right in Figure 11 also illustrate how similar the

posteriors from different models can be after taking into account the submodel uncertainty.

The indicated quantiles are similar when pjmp= 2 % despite their being quite different for

each submodel.

We now examine the influence of k,, (used to model outliers) on the posterior proba-

bilities of the submodels. As above for pout, while it is intended that a value of kut fixed

in advance be used, it is useful to see how the posterior for 7 varies as a function of kol,

Unfortunately the situation is not so simple when varying kout, as each submodel must be

re-fitted (i.e. optimised over 0) with every new value of kou. In general this will require

considerable computation, so instead we provide a simple approximation.

By definition of an outlier we require kou,>1, and in practice we expect it to be at least as

large as 5 (which will approximately remove an outlier from the analysis). If we approximate

the likelihood by conditioning on estimates of r and 0, then the ratio of the likelihoods for

M under kout=kout, to kout2 is approximately,

kout2  exp -k21 i2, -1exP 2 & 2  2.o(1) (9)
kout , obsl (2, outi ob.s, -2ol / ebp (91

where A1c conditions plots o(1), o(2),.. . , o(n) only as outliers, i).,)0 is the estimated mea-

surement error on plot o(i) under kout=ko,,j, and aob5 .j is the estimate of aob, when kut=k,,,,,j.

This approximation is reasonable if ko ab5 is large compared with I- (so that outliers are

approximately independent of the other plots), which will typically be the case.

Expression (9) still depends on the ' ob j, and to avoid the estimation of these for every

value of kout, we could condition on the same value of aob, obtained from, say, ko,= 10. The
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resulting approximation,

exp 2 2  1-o-n /exp --- 7 ;-.o,)) (10)
\koutl /2k u tl o " i l E ~ ~ i 2I~ b ,W:,

\. . tU1or 0b j=1 / k-Lk2 & ,IE

is very good and easily used to evaluate the effect of changing kout. Note that this assumption

of similar 0 is more reasonable here than when comparing different submodels as practical

values of k.. t will all essentially remove outliers from the analysis. Furthermore, for values

of Ij,o(iI of about 4 or 5 that create submodel uncertainty, the ratio of exponentials in

equation (10) is approximately unity (especially for larger kou), wlich results in the ratio of'

likelihoods being approximately kout 2/koutl.

Thus this approximation suggests using the (pou,,kout) combination of (Pout2 -  ko,l)koutl

instead of (pu12,k.ou 2 ), and so Figure 11 can again be used. This approximation also illus-

trates how, for larger kout, it is the ratio of Pout to kout that is of primary importance and

not the individual values.

6 Discussion

We have proposed a procedure for modelling outliers and fertility jumps when estimating

treatment effects in agricultural field trials. As a first stage, we have specified a state-space

modelling framework for agricultural trials in the absence of such anomalies which includes

many previously proposed models as special cases. One special case which has not received

much previous attention, the so-called partial second differencing model when A, = A2.

seems particularly interesting because of its properties and its success in examples. The

overall procedure seems to be successful in accommodating outliers and fertility jumps in a

routine way, and it also allows us to take account of uncertainty about model specification

and the presence of anomalies when making inference about the treatment effects. The

framework allows for both random and fixed effects modelling in a natural way, and permits

the incorporation of prior information very easily.
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The procedure we have used to model fertility jumps can be employed for any stationary

fertility model by again assuming independence between fertilities across the jump. For

the first difference, or random walk, fertility model, the F,-F,-1 are iid N(0,4ad), and we
could model a fertility jump at plot t by multiplying the variance a2  by a constant k2

(=100 say). While this has the desired effect, examples suggest that after accounting for

possible fertility jumps a smoother fertility model is likely to be more appropriate. Modelling

fertility jumps under models such as the ARIMA (1,1,0) or second differencing models is not

so straightforward.

There has been little attempt to model fertility jumps in agricultural field trials, although

the occurrence of level shifts in general time series is often recognised. Outliers are usually

dealt with by replacing these observations with missing values. The decision to designate

an observation as an outlier may be made by a subjective examination of residuals, or by

a formal statistical test (see for example Kitagawa, 1979). Note that this is approximately

equivalent to conditioning on a single submodel, which we have shown to be unsatisfactory

in some circumstances.

The posterior distribution of r can also be approximated using the Gibbs sampler (Geman

and Geman, 1984; Gelfand and Smith, 1990). Here we define the state X = (FtOt, rt,c'),

and from an initial value of X replace X with a realisation from the distribution of (X, .X: (j :/

i), Y). All of these distributions are trivial except perhaps when X, is an eleiaent of 0 (Taplin,

1990). After enough replacements, X will be approximately a realisation from the posterior

p(XIY), and hence a stochastic approximation can be formed by such repeated sampling.

This procedure is efficient at determining C, as it visits the submodels in time propor-

tional to their posterior probability. For well designed agricultural field trials, however, it

appears relatively easy to determine C. Furthermore, the Gibbs sampler is not as efficient, at

approximating p(rY, Mf) as the approximation p(rIY, M, O) used in equation (6), which uses

the normality assumptions to better advantage. Another disadvantage to the Gibbs sampler
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is that the estimation must be repeated for different submodel priors, so that a sensitivity

analysis sucil as Figure 11 in Section 5 is not as immediately available. Also, by examining

the submodels included in C, the data, and using the intuition behind what the submodels

represent, it may be possible to determine if enough submodels have been included in C. On

the other hand, the partial results available to date (Raftery and Lewis. 1991) suggest thal

the Gibbs sampler would have to be run for a large number of iterations (perhaps on the

order of 4,000-5,000) to obtain accuracy comparable to that obtained with the approxima-

tions we have used here. Thus, the Gibbs sampler may well be computationally inefficient

compared to the approximations used here.

Based on our examples we suggest the following points:

(1) It is better to account for uncertainty about outliers and fertility jumps than to con-

dition on a single set of such anomalies.

(2) Possible outliers and fertility jumps can have a greater influence on our assessment of

the treatment effects than the choice of any (reasonable) fertility model.

(3) Accounting for possible outliers and fertility jumps can reduce the disparity between

treatment estimates from different fertility models.

(4) The possibility of outliers and fertility jumps should be considered while deciding on

an appropriate fertility model (if one such fertility model is to be conditioned on).
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Table 1: comparison of submodels for trial ARC 8.
model submodel. with c23=1 submodel with C23=2

loglike a 2  %Vert A, loglike a 2  %fert A,
A2 =0 0.1 0.16 64 0.81 5.5 0.14 82 0.83

-A=2 0.0 0.16 51 0.71 5.2 0.10 68 0.77



Table 2: comparison of submodels for trial ARC 6.
model submodel with c,5=1 submodel with c5 =3

loglike a' A, loglike a' A,
A2=0 0.6 0.36 0.94 2.8 0.50 0.97

A1=A2 0.0 0.30 0.67 4.4 0.36 0.72



Table 3: The 12 best submodels for trial ARC 1 and their approximate posterior probabilities
submodel posterior

jumps outliers probability (%)
5 15.6
5 49 11.0

5,105 49 10.0
5,48,105 49 9.2
5,46,105 49 7.7

5 35,49 7.2
5,105 5.6
5,105 35,49 4.8

5 147 3.5
5,47,105 49 3.3
5,48,105 35,49 3.1

5 35 3.1



Table 4: Marginal posterior probabilities of outliers and fertility jumps for trial ARC 1
outlier or posterior

fertility jump probability (%)

j(5) 97
j(46) 9
j(48) 14

j(105) 52
o(35) 27
o(49) 63

o(147) 17
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Figure 1: Comparison of fertilty models
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Figure 2: posterior distribution for early spraying - no spraying in the mildew trial; solid
line true posterior, dotted line approximation (5).
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Figure 3: Comparison between fixed and random effects models, trial ARC 2.
Posterior means for varieties (left) and means divided by standard deviations for treatment
differences (right).
The vertical and horizontal axes indicate random and fixed effect models respectively.
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Figure 5: effect on posterior probability of an outlier when conditioning on the MLE for
cb under the simple model with F=O. Only the observation yl in question is non-zero.
The graphs (left to right) correspond to trials with (treatment,replicates) combinations of
(5,3), (10,3) and (20,3) respectively. The true posterior (and approximation (7)) is solid and
approximation (8) is dotted.
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